Semi-simplicial Types in Logic-enriched Homotopy Type Theory
نویسندگان
چکیده
The problem of defining Semi-Simplicial Types (SSTs) in Homotopy Type Theory (HoTT) has been recognized as important during the Year of Univalent Foundations at the Institute of Advanced Study [14]. According to the interpretation of HoTT in Quillen model categories [5], SSTs are type-theoretic versions of Reedy fibrant semi-simplicial objects in a model category and simplicial and semi-simplicial objects play a crucial role in many constructions in homotopy theory and higher category theory. Attempts to define SSTs in HoTT lead to some difficulties such as the need of infinitary assumptions which are beyond HoTT with only non-strict equality types. Voevodsky proposed a definition of SSTs in Homotopy Type System (HTS) [26], an extension of HoTT with non-fibrant types, including an extensional strict equality type. However, HTS doesn’t have the desirable computational properties such as decidability of type checking and strong normalization. In this paper, we study a logic-enriched homotopy type theory, an alternative extension of HoTT with equational logic based on the idea of logic-enriched type theories [1, 17]. In contrast to Voevodsky’s HTS, all types in our system are fibrant and it can be implemented in existing proof assistants. We show how SSTs can be defined in our system and outline an implementation in the proof assistant Plastic [8]. 1998 ACM Subject Classification F.4.1 Lambda calculus and related systems
منابع مشابه
Extending Homotopy Type Theory with Strict Equality
In homotopy type theory (HoTT), all constructions are necessarily stable under homotopy equivalence. This has shortcomings: for example, it is believed that it is impossible to define a type of semi-simplicial types. More generally, it is difficult and often impossible to handle towers of coherences. To address this, we propose a 2-level theory which features both strict and weak equality. This...
متن کاملW-types in homotopy type theory
We will give a detailed account of why the simplicial sets model of the univalence axiom due to Voevodsky also models W-types. In addition, we will discuss W-types in categories of simplicial presheaves and an application to models of set theory.
متن کاملHomotopy type theory and Voevodsky's univalent foundations
Recent discoveries have been made connecting abstract homotopy theory and the field of type theory from logic and theoretical computer science. This has given rise to a new field, which has been christened “homotopy type theory”. In this direction, Vladimir Voevodsky observed that it is possible to model type theory using simplicial sets and that this model satisfies an additional property, cal...
متن کاملTwo-Level Type Theory and Applications
We define and develop two-level type theory, a version of MartinLöf type theory which is able to combine two type theories. In our case of interest, the first of these two theories is homotopy type theory (HoTT) which may include univalent universes and higher inductive types. The second is a traditional form of type theory validating uniqueness of identity proofs (UIP) and may be understood as...
متن کاملON THE HOMOTOPY THEORY OF n-TYPES
We achieve a classification of n-types of simplicial presheaves in terms of (n− 1)-types of presheaves of simplicial groupoids. This can be viewed as a description of the homotopy theory of higher stacks. As a special case we obtain a good homotopy theory of (weak) higher groupoids.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1506.04998 شماره
صفحات -
تاریخ انتشار 2015